Parallel and Distributed

Algorithms
Winter 2009/2010 10

Issue: 18.01.2010 Due: 25.01.2010

Information

Solutions in english or german are fine.

10.1. Problem (10) Better splitters for Sample-Sort
We consider the following procedure to determine a set of p — 1 good splitters. After sorting
its % keys a process selects keys in position ¢ - ;% for 2 = 0,...p — 1 as its sample and
sends this sample to process 1, who then sorts all p?> keys. Then process 1 computes the

final sample S by selecting all keys in positions z-p for 2 = 1,...,p — 1 and broadcasts
S:{Sl < 8§ < ... <5p,1}.

Show that at most 2% keys are smaller than s; (resp. in between s;_; and sg, or larger than

Spfl).

10.2. Problem (10+10) Odd-Even Merge
Let m be a power of two. For a sequence z = (zo, ..., Zm_1) let even(z) = (2o, z2,Z4,. .., Tm—2)
and odd(z) = (z1,zs,Zs,.-.,Zm_1) be the subsequences of even- and odd-numbered com-

ponents of z.

Assume that =z and y are sorted sequences of length m each. To merge z and y, odd-even
Merge recursively merges

- even(z) and odd(y) to obtain the sorted sequence v = (ug,u1,...,Un 1) and
- odd(z) and even(y) to obtain the sorted sequence v = (vg,v1,...,Um_1)-
Finally odd-even merge computes the output sequence w = (wy, ..., Wam_ 1) from u and v as

follows: in parallel for 0 < < m — 1, if u; < v; then set wy; = u;, wo; 11 = v; and otherwise
W2; = Vs, W2i41 = Us-

(a) Show with the 0-1 principle that odd-even merge works correctly.

(b) Assume that consecutive intervals of z and y —of length m /2q each— are distributed among
q processes. Show how to implement odd-even merge in computing time O(% -log, 2q) and
communication time O(7 - log; q).



