

Parallel and Distributed Algorithms

Winter 2009/2010

Issue: 18.01.2010

Due: 25.01.2010

10

Information

Solutions in english or german are fine.

10.1. Problem (10)

Better splitters for Sample-Sort

We consider the following procedure to determine a set of p-1 good splitters. After sorting its $\frac{n}{p}$ keys a process selects keys in position $i \cdot \frac{n}{p^2}$ for $i = 0, \ldots p - 1$ as its sample and sends this sample to process 1, who then sorts all p^2 keys. Then process 1 computes the final sample S by selecting all keys in positions $i \cdot p$ for $i = 1, \ldots, p - 1$ and broadcasts $S = \{s_1 < s_2 < \ldots < s_{p-1}\}.$

Show that at most $2\frac{n}{p}$ keys are smaller than s_1 (resp. in between s_{k-1} and s_k , or larger than s_{p-1}).

10.2. Problem (10+10)

Odd-Even Merge

Let *m* be a power of two. For a sequence $x = (x_0, \ldots, x_{m-1})$ let $even(x) = (x_0, x_2, x_4, \ldots, x_{m-2})$ and $odd(x) = (x_1, x_3, x_5, \ldots, x_{m-1})$ be the subsequences of even- and odd-numbered components of *x*.

Assume that x and y are sorted sequences of length m each. To merge x and y, odd-even Merge recursively merges

- even(x) and odd(y) to obtain the sorted sequence $u=(u_0,u_1,\ldots,u_{m-1})$ and
- $\operatorname{odd}(x)$ and $\operatorname{even}(y)$ to obtain the sorted sequence $v = (v_0, v_1, \ldots, v_{m-1})$.

Finally odd-even merge computes the output sequence $w = (w_0, \ldots, w_{2m-1})$ from u and v as follows: in parallel for $0 \le i \le m-1$, if $u_i \le v_i$ then set $w_{2i} = u_i, w_{2i+1} = v_i$ and otherwise $w_{2i} = v_i, w_{2i+1} = u_i$.

(a) Show with the 0-1 principle that odd-even merge works correctly.

(b) Assume that consecutive intervals of x and y –of length m/2q each– are distributed among q processes. Show how to implement odd-even merge in computing time $O(\frac{m}{q} \cdot \log_2 2q)$ and communication time $O(\frac{m}{q} \cdot \log_2 q)$.